

Seizures in NTP F344/N Rats

Gail Pearse BVM&S, Dip ACVP
Laboratory of Experimental Pathology

Overview

Introduction to Seizures in NTP F344/N rats

- Background information
- Studies involved
- Nature, incidence, frequency and time of onset of seizures

General

- Etiology of seizures in rodents
- Histopathological changes resulting from seizures

Investigation

- Possible Etiology
- Potential impact on studies

Conclusions

Background Information

- Since 2000, seizures have been observed in treated, control, and sentinel male and female F344/N rats in NTP carcinogenicity studies
- Rats derived from a single lineage
- Individually housed rats (inhalation and dermal studies)
- Studies were performed at 3 laboratories
- Similar time of onset of seizures across the studies
 - Range: 40-79 weeks in females, 32-104 weeks in males

Studies Involved

5 Inhalation Studies

- α -Methylstyrene (AMS)
- Divinylbenzene-HP (DVB)
- Methyl isobutyl ketone (MIBK)
- Cumene
- Propargyl alcohol

Studies Involved

2 Dermal Studies

- Diisopropylcarbodiimide (DIC)
- Bis(2-Chloroethoxy) methane

Nature of Seizures

- Variable duration, majority short-lived: <60 seconds
- Variable intensity: minimal to mild
- Abnormal hunched posture and chewing movements
- Occasional clonic spasms of the limbs
- Uncommonly: more pronounced jerking movements
- Short post-ictal recovery period:30-120 seconds

Nature of Seizures (cont.)

- Noted during daily routine handling/animal care activities (predominantly in the morning)
- Handling is not a prerequisite for the onset of seizures

	∝-Methylstyrene	Cumene	Divinylbenzene -HP	Methyl Isobutyl Ketone	Propargyl Alcohol
Male	9/200	6/200	8/200	14/200	12/200
Control	0	0	1 1	2 1,1	1 6
Low	3 1,3,5	1 2	4 1,2,7,8	3 2,2,4	5 1,2,3,3,5
Middle	1	<mark>4</mark> 1,1,1,3	1 3	4 1,1,3,3	4 1,2,3,5
High	5 1,2,3,6,10	1 1	2 1,2	5 1,2,3,5,17	2 1,2
Trend P value	0.016	0.242	0.500	0.112	0.500
Female	16/200	24/200	14/200	36/200	21/200
Control	2 1,3	6 1,2,2,3,4,4	1 2	12 1,1,1,2,3,3,4,5,6,7,10,10	3 1,1,3
Low	2 1,2	8 1,1,1,1,1,1,3,1	2 3,5	4 2,4,4,6	3 1,3,4
Middle	3 1,7,9	5 1,1,2,4,5	6 2,2,2,2,4,5	6 1,2,3,3,3,4	<mark>6</mark> 1,1,2,3,5,11
High	9 1,1,2,3,3,3,3,4,8	5 2,3,4,10,11	5 1,1,1,2,2	14 1,1,1,1,2,4,5,6,6,6,7,16,25,27	9 1,1,2,2,3,4,5,5,13
Trend P value	0.001	0.278	0.038	0.131	0.013

	∝-Methylstyrene	Cumene	Divinylbenzene -HP	Methyl Isobutyl Ketone	Propargyl Alcohol
Male	9/200	6/200	8/200	14/200	12/200
Control	0	0	1	2 1,1	1 6
Low	3 1,3,5	1 2	4 1,2,7,8	3 2,2,4	5 1,2,3,3,5
Middle	1	4 1,1,1,3	1 3	4 1,1,3,3	4 1,2,3,5
High	5 1,2,3,6,10	1	2 1,2	5 1,2,3,5,17	2 1,2
Trend P value	0.016	0.242	0.500	0.112	0.500
Female	16/200	24/200	14/200	36/200	21/200
Control	2 1,3	6 1,2,2,3,4,4	1 2	12 1,1,1,2,3,3,4,5,6,7,10,10	3 1,1,3
Low	2 1,2	8 1,1,1,1,1,1,3,1	2 3,5	4 2,4,4,6	3 1,3,4
Middle	3 1,7,9	5 1,1,2,4,5	6 2,2,2,2,4,5	6 1,2,3,3,3,4	6 1,1,2,3,5,11
High	9 1,1,2,3,3,3,3,4,8	5 2,3,4,10,11	5 1,1,1,2,2	14 1,1,1,1,2,4,5,6,6,6,7,16,25,27	9 1,1,2,2,3,4,5,5,13
Trend P value	0.001	0.278	0.038	0.131	0.013

	∝-Methylstyrene	Cumene	Divinylbenzene -HP	Methyl Isobutyl Ketone	Propargyl Alcohol
Male	9/200	6/200	8/200	14/200	12/200
Control	0	0	1	2 1,1	1 6
Low	3 1,3,5	1 2	4 1,2,7,8	3 2,2,4	5 1,2,3,3,5
Middle	1	4 1,1,1,3	1 3	4 1,1,3,3	4 1,2,3,5
High	5 1,2,3,6,10	1	2 1,2	5 1,2,3,5,17	2 1,2
Trend P value	0.016	0.242	0.500	0.112	0.500
Female	16/200	24/200	14/200	36/200	21/200
Control	2 1,3	6 1,2,2,3,4,4	1 2	12 1,1,1,2,3,3,4,5,6,7,10,10	3 1,1,3
Low	2 1,2	8 1,1,1,1,1,1,3,1	2 3,5	4 2,4,4,6	3 1,3,4
Middle	3 1,7,9	5 1,1,2,4,5	6 2,2,2,2,4,5	6 1,2,3,3,3,4	6 1,1,2,3,5,11
High	9 1,1,2,3,3,3,3,4,8	5 2,3,4,10,11	5 1,1,1,2,2	14 1,1,1,1,2,4,5,6,6,6,7,16,25,27	9 1,1,2,2,3,4,5,5,13
Trend P value	0.001	0.278	0.038	0.131	0.013

	∝-Methylstyrene	Cumene	Divinylbenzene -HP	Methyl Isobutyl Ketone	Propargyl Alcohol
Male	9/200	6/200	8/200	14/200	12/200
Control	0	0	1	2 1,1	1 6
Low	3 1,3,5	1 2	4 1,2,7,8	3 2,2,4	5 1,2,3,3,5
Middle	1 1	4 1,1,1,3	1 3	4 1,1,3,3	4 1,2,3,5
High	5 1,2,3,6,10	1 1	2 1,2	5 1,2,3,5,17	2 1,2
Trend P value	0.016	0.242	0.500	0.112	0.500
Female	16/200	24/200	14/200	36/200	21/200
Control	2 1,3	6 1,2,2,3,4,4	1 2	12 1,1,1,2,3,3,4,5,6,7,10,10	3 1,1,3
Low	2 1,2	8 1,1,1,1,1,1,3,1	2 3,5	4 2,4,4,6	3 1,3,4
Middle	3 1,7,9	5 1,1,2,4,5	6 2,2,2,2,4,5	6 1,2,3,3,3,4	6 1,1,2,3,5,11
High	<mark>9</mark> 1,1,2,3,3,3,3,4,8	5 2,3,4,10,11	5 1,1,1,2,2	14 1,1,1,1,2,4,5,6,6,6,7,16,25,27	9 1,1,2,2,3,4,5,5,13
Trend P value	0.001	0.278	0.038	0.131	0.013

	∝-Methylstyrene	Cumene	Divinylbenzene -HP	Methyl Isobutyl Ketone	Propargyl Alcohol
Male	9/200	6/200	8/200	14/200	12/200
Control	0	0	1	2 1,1	1
Low	3 1,3,5	1 2	4 1,2,7,8	3 2,2,4	5 1,2,3,3,5
Middle	1	4 1,1,1,3	1 3	4 1,1,3,3	4 1,2,3,5
High	5 1,2,3,6,10	1 1	2 1,2	5 1,2,3,5,17	2 1,2
Trend P value	0.016	0.242	0.500	0.112	0.500
Female	16/200	24/200	14/200	36/200	21/200
Control	2 1,3	6 1,2,2,3,4,4	1 2	12 1,1,1,2,3,3,4,5,6,7,10,10	3 1,1,3
Low	2 1,2	8 1,1,1,1,1,1,3,1	2 3,5	4 2,4,4,6	<mark>3</mark> 1,3,4
Middle	3 1,7,9	5 1,1,2,4,5	6 2,2,2,2,4,5	6 1,2,3,3,3,4	<mark>6</mark> 1,1,2,3,5,11
High	9 1,1,2,3,3,3,3,4,8	5 2,3,4,10,11	5 1,1,1,2,2	14 1,1,1,1,2,4,5,6,6,6,7,16,25,27	<mark>9</mark> 1,1,2,2,3,4,5,5,13
Trend P value	0.001	0.278	0.038	0.131	0.013

	∝-Methylstyrene	Cumene	Divinylbenzene -HP	Methyl Isobutyl Ketone	Propargyl Alcohol
Male	9/200	6/200	8/200	14/200	12/200
Control	0	0	1 1	2 1,1	1 6
Low	3 1,3,5	1 2	4 1,2,7,8	3 2,2,4	5 1,2,3,3,5
Middle	1	4 1,1,1,3	1 3	4 1,1,3,3	4 1,2,3,5
High	5 1,2,3,6,10	1	2 1,2	5 1,2,3,5,17	2 1,2
Trend P value	0.016	0.242	0.500	0.112	0.500
Female	16/200	24/200	14/200	36/200	21/200
Control	2 1,3	6 1,2,2,3,4,4	1 2	12 1,1,1,2,3,3,4,5,6,7,10,10	3 1,1,3
Low	2 1,2	8 1,1,1,1,1,1,3,1	2 3,5	4 2,4,4,6	3 1,3,4
Middle	3 1,7,9	5 1,1,2,4,5	6 2,2,2,2,4,5	6 1,2,3,3,3,4	6 1,1,2,3,5,11
High	9 1,1,2,3,3,3,3,4,8	5 2,3,4,10,11	5 1,1,1,2,2	14 1,1,1,1,2,4,5,6,6,6,7,16,25,27	9 1,1,2,2,3,4,5,5,13
Trend P value	0.001	0.278	0.038	0.131	0.013

Incidence of seizures across studies

Incidence of Seizures in Females

Control: 9.6% (2.0 - 24.0%); n = 250

Treated: 11.6% (8.7 - 16.0%); n = 750

Incidence of Seizures in Males

Control: 1.6% (0.0 - 4.0%); n = 250

Treated: 6.0% (4.0 - 8.0%); n = 750

Week of Onset of Seizures

Dose Group	α-Methyl styrene	Cumene	Divinylbenzene	Methyl Isobutyl Ketone	Propargyl Alcohol			
	Male							
Control	-	-	100	95	76			
Low	69	97	56	67	42			
Middle	104	32	7 4	57	55			
High	70	103	56	65	57			
sentinel	-	77	-	-	75			
		-	Female		_			
Control	62	58	76	63	51			
Low	49	50	79	68	45			
Middle	50	48	41	50	51			
High	49	43	59	40	45			
sentinel	-	-	-	-	41			

Summary

- Seen in treated, control and sentinel animals
- Seizure prone animals tended to have multiple episodes
- Number of seizures/animal over the course of study was generally low - majority having ≤5/animal
- Females were apparently more susceptible than males
 - higher incidence and /or multiplicity of seizures

Summary

- Treatment appeared to exacerbate the incidence and/or multiplicity of seizures in some studies
- Treatment appeared to shorten the time of onset in males and/or females

Etiology of Seizures

- Major metabolic derangement
 - Often no associated histopathology

Idiopathic

- underlying CNS disorder cannot be identified
- In these cases, a genetic basis is generally suspected
- EL (epilepsy) mice genetic model of idiopathic epilepsy in man
- animals reported to experience 25-30 seizures during routine weekly cage changing
- Recurrent seizures were associated with increased glial cells
- with or without neuronal loss

Etiology of Seizures

- Exposure to neurotoxicants
 - Generally results in recognizable morphological changes, which may be irreversible
 - Toxic agents tend to produce primary lesions in one specific target structure eg blood vessels, meninges, neuronal cell bodies or axons
 - However, Identification of abnormal foci resulting in seizures can be extremely difficult to achieve

Seizure-Induced Pathology

- Histopathological lesions caused by seizures arise due to the temporary hypoxia/anoxia
- Results in degeneration/necrosis of metabolically active neurons
- Pyramidal neurons of the dorsal hippocampus (particularly CA1 and CA3) are most susceptible to degeneration
- Glial cells typically proliferate around damaged neuronal cell bodies

Investigation

- Possible etiology of the seizures
- Potential impact on study interpretation

Possible Etiology

Environmental conditions

Housing

Noise levels

Temperature/humidity

Diet

Water

Histopathological basis

Routine histopathology

Serial sections of brain on subset animals across studies

Possible Etiology - Environmental Conditions

Housing

- Only seen in studies where rats are individually housed
- Seizures seen in studies conducted at 3 different laboratories

Environmental noise

- Measured at various times, under various conditions
- Considered insufficient to induce audiogenic response

Temperature and humidity

Within acceptable limits

Possible Etiology - Environmental Conditions

NTP 2000 Diet

- Routinely evaluated
- No deviation in composition, contaminants, nutrients
- Mg levels in NTP 2000 diet favorable when compared with NIH-07 diet

Drinking water supply

Did not exceed the U.S. Environmental Protection Agency (EPA)
maximum contaminant levels.

Possible Etiology - Histopathological Basis

- Histopathology
 - Routine histopathology
 - Step section examination of subset of animals

Possible Etiology - Routine Histopathology

- Standard 3 sections include fore, mid and hindbrain
- Included major sites expected to see lesions resulting from seizure activity
- No treatment-related neoplastic or non-neoplastic changes in CNS in either sex in any of the inhalation studies

Possible Etiology - Routine Histopathology

Statistical analysis of background lesions and seizures

- To determine association between seizures and brain or pituitary gland pathology
- Analyses were conducted on each study separately, and data from all 5 studies, combined
- Pituitary Gland
 - adenoma and/or carcinoma, hyperplasia, hemorrhage, cyst
- Brain
 - Primary and metastatic tumors,
 - inflammation, gliosis, necrosis, neuronal degeneration, demyelination
 - Vascular disturbances hemorrhage, thrombosis, infarct congestion
 - Compression, hydrocephalus

Result

No statistically significant association between CNS Pathology and seizures

Possible Etiology - Step Section Examination

- To maximize the probability of detecting lesions examined in detail a subset of (12) animals from across the 5 studies
 - Terminally sacrificed animals
 - Females only
 - 4 Controls no history of seizures
 - 4 Controls clinical history of seizures
 - 4 Treated females clinical history of seizures
 - Clinically affected animals with a high number of recorded seizures
- Step sections
 - 30 μm intervals
 - approximately 25 slides per animal

Possible Etiology - Step Section Examination

Group Examined	(No: animals) Chemical	No: seizures
Control Females	(2) ∝-Methylstyrene	0
No history of Seizures	(2) Divinylbenzene-HP	0
Control Females	(1) Cumene	4
With history of Seizures	(3) Methyl isobutyl ketone	2,10,10
Treated Females	(1) ∝-Methylstyrene	7
With history of Seizures	(1) Cumene	10
	(1) Methyl isobutyl ketone	16
	(1) Propargyl Alcohol	11

Result of Step Section Examination

	Control animals no seizures	Control animals with seizures	Treated animals with seizures
Total number animals examined	4	4	4
Total number of seizures	0	26	43
Number of animals with Axonopathy	4	1	3
Severity grade (per section)	0-2	0-2	0-3

- Axonopathy (axonal degeneration) only consistent finding
- Characterized by swelling of the axon and fragmentation of the surrounding myelin sheaths when present
- Trigeminal nerve tract: motor and sensory nerve supplying face
- Medial longitudinal Fasciculus: nerve fiber bundle extending between midbrain and spinal cord. Interconnects various cranial nerve cell nuclei

Result of Step Section Examination

- No association was found between axonopathy and seizure activity
- No identifiable lesions that may have induced seizures
- No lesions resulting from seizure activity were seen

Result of Investigation

- The etiology of seizures in these studies was not determined
- No environmental factors identified which may have resulted in seizures
- No CNS histopathological changes associated with seizures

Potential Impact on Study Interpretation

- Seizures were sporadic and infrequent over the course of the 2 year studies
- Although the etiology of seizures was not determined, they occurred in treated, control and sentinel animals and were therefore not considered a direct effect of treatment
- Appears that treatment may have exacerbated incidence, multiplicity and/or accelerated the time of onset of seizures

Potential Impact on Study Interpretation

- No effect on body weight gain
- Not associated with the death of any animals
- CNS was not a target organ in any of these studies
- No CNS histopathology resulting from seizures

Conclusion

- It was considered unlikely that the occurrence of seizures had a major impact on any of the treatment-related toxicological or carcinogenic effects or on their interpretation.
- Therefore the integrity of these studies was not considered to be compromised

Result of Step Section Examination

Lesion	∝Methylstyrene	Cumene	Divinylbenzene	Methyl isobutyl ketone	Propargyl Alcohol
Total number animals examined	3	2	2	4	1
Number of animals with seizures	1	1	0	4	1
Axonopathy	3	0	2	2	1
Trigeminal Tract Cranial nerve V	3	0	2	2	1
Medial Longitudinal Fasciculus	3	0	2	0	1
Other sites	1	0	2	0	0
Severity grade of lesion(s)	1-2	-	1-3	1	1

Severity Grade

- 1 = Minimal (total of 1 affected axon/slide)
- 2 = Mild (total of 2-4 affected axons/slide)
- 3 = Moderate (total of 5-9 affected axons/slide)

Result of Step Section Examination

	Control animals no Seizures	Control animals with seizures	Treated animals with seizures
Total number animals examined	4	4	4
Total number of seizures	0	26	43
Number of animals with Axonopathy	4	1	3
Severity grade (per section)	0-2	0-2	0-3

Severity Grade

- 1 = Minimal (total of 1 affected axon/section)
- 2 = Mild (total of 2-4 affected axons /section)
- 3 = Moderate (total of 5-9 affected axons /section)

Axonopathy

Neurons/Nerve cell bodies

are located within the grey matter

Axons

- carry impulses away from nerve cell body and are
- predominantly located in the white matter and cranial nerve tracts

Axonopathy

- Is the degeneration of an axon
- Characterized by swelling of the axon and fragmentation of the surrounding myelin sheaths when present.

Axonopathy

Axonopathy

- Is the degeneration of an axon
- Characterized by swelling of the axon and fragmentation of the surrounding myelin sheaths when present.
- Trigeminal nerve tract
 - Trigeminal nerve motor and sensory nerve supplying face
- Medial longitudinal Fasciculus
 - nerve fiber bundle extending between midbrain and spinal cord
 - Interconnects various crainial nerve cell nuclei